Temperature effects on the electrohydrodynamic and electrokinetic behaviour of ion-selective nanochannels.

نویسندگان

  • Jeffery A Wood
  • Anne M Benneker
  • Rob G H Lammertink
چکیده

A non-isothermal formulation of the Poisson-Nernst-Planck with Navier-Stokes equations is used to study the influence of heating effects in the form of Joule heating and viscous dissipation and imposed temperature gradients on a microchannel/nanochannel system. The system is solved numerically under various cases in order to determine the influence of temperature-related effects on ion-selectivity, flux and fluid flow profiles, as well as coupling between these phenomena. It is demonstrated that for a larger reservoir system, the effects of Joule heating and viscous dissipation only become relevant for higher salt concentrations and electric field strengths than are compatible with ion-selectivity due to Debye layer overlap. More interestingly, it is shown that using different temperature reservoirs can have a strong influence on ion-selectivity, as well as the induced electrohydrodynamic flows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observation and experimental investigation of confinement effects on ion transport and electrokinetic flows at the microscale

Electrokinetic effects adjacent to charge-selective interfaces (CSI) have been experimentally investigated in microfluidic platforms in order to gain understanding on underlying phenomena of ion transport at elevated applied voltages. We experimentally investigate the influence of geometry and multiple array densities of the CSI on concentration and flow profiles in a microfluidic set-up using ...

متن کامل

Electrokinetic transport in nanochannels. 2. Experiments.

We present an experimental study of nanoscale electrokinetic transport in custom-fabricated quartz nanochannels using quantitative epifluorescence imaging and current monitoring techniques. One aim is to yield insight into electrical double layer physics and study the applicability of continuum theory to nanoscale electrokinetic systems. A second aim is to explore a new separation modality offe...

متن کامل

Electrokinetic instability near charge-selective hydrophobic surfaces.

The influence of the texture of a hydrophobic surface on the electro-osmotic slip of the second kind and the electrokinetic instability near charge selective surfaces (permselective membranes, electrodes, or systems of microchannels and nanochannels) is investigated theoretically using a simple model based on the Rubinstein-Zaltzman approach. A simple formula is derived to evaluate the decrease...

متن کامل

Electrokinetic transport in nanochannels. 1. Theory.

Electrokinetic transport in fluidic channels facilitates control and separation of ionic species. In nanometer-scale electrokinetic systems, the electric double layer thickness is comparable to characteristic channel dimensions, and this results in nonuniform velocity profiles and strong electric fields transverse to the flow. In such channels, streamwise and transverse electromigration fluxes ...

متن کامل

Ion-specific anomalous electrokinetic effects in hydrophobic nanochannels.

We show with computer simulations that anomalous electrokinetic effects, such as ion specificity and nonzero zeta potentials for uncharged surfaces, are generic features of electro-osmotic flow in hydrophobic channels. This behavior is due to the stronger attraction of larger ions to the "vapor-liquidlike" interface induced by a hydrophobic surface. We propose an analytical model involving a mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 28 11  شماره 

صفحات  -

تاریخ انتشار 2016